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Abstract. The use of the join operator in metric spaces leads to what is
known as a similarity join, where objects of two datasets are paired if they
are somehow similar. We propose an heuristic that solves the 1-NN self-
similarity join, that is, a similarity join of a dataset with itself, that brings
together each element with its nearest neighbor within the same dataset.
Solving the problem using a simple brute-force algorithm requires O(n2)
distance calculations, since it requires to compare every element against all
others. We propose a simple divide-and-conquer algorithm that gives an

approximated solution for the self-similarity join that computes only O(n
3
2 )

distances. We show how the algorithm can be easily modified in order to
improve the precision up to 31% (i.e., the percentage of correctly found
1-NNs) and such that 79% of the results are within the 10-NN, with no
significant extra distance computations. We present how the algorithm can
be executed in parallel and prove that using Θ(

√
n) processors, the total

execution takes linear time. We end discussing ways in which the algorithm
can be improved in the future.

1 Introduction

There are many problems in multiple domains that require similarity algorithms
to be solved: Multimedia Retrieval, Pattern Recognition and Recommendation of
Products to name a few, rely on different similarity notions, especially on similarity
join problems. A similarity join between two datasets X and Y can be defined as a
set of pairs, S = X ./ Y where (x, y) ∈ S iff x ∈ X, y ∈ Y, x 6= y and x is similar
to y. Similarity joins can be as costly as O(n2) distance computations when every
object has to be compared against all others in the dataset, hence the interest in
proposing new indexing methods and efficient algorithms.

The notion of similarity can vary through applications, however, metric spaces
are often used as a similarity criterion, therefore if two elements are at a close
distance in the given space, they can be seen as similar. A metric space is a pair
(U, δ), where U is a universe of objects and δ : U×U → R+ is a metric function
(i.e., a non-negative function that is reflexive, symmetric and holds the triangle
inequality). Metric spaces are useful since they allow the use of many indexing



techniques and algorithms that take advantage of the triangle inequality to discard
objects from comparison when performing similarity joins.

The final question to address regarding similarity joins is “how many results
should be returned?” There are mainly 2 strategies to determine the number of
results given a dataset D ⊆ U. One of them is that given a threshold r, for each
element x ∈ D obtain all u ∈ D such that δ(x, u) < r, which is called a range
search. The other approach is to find the k nearest neighbors of each element i.e.,
the k other elements in D at the closest distances.

The problem we want to address is the generation of similarity graphs, which is
a problem of self-similarity join. A similarity graph is a set of vertices, one for each
element of the dataset, where two elements from it share an edge if they are part of
the result of the join. Particularly we will work with the IMGpedia Dataset [4], a
linked dataset that provides visual features and a similarity graph for the images of
the Wikimedia Commons dataset. The similarity graph of IMGpedia is the result
of a 10-NN self-similarity join; it has 15 million vertices (images) and 150 million
edges (similarity relations), and was built using the Fast Library for Approximated
Nearest Neighbors (FLANN) [9] that automatically chooses an efficient, scalable
technique to solve the similarity join.

In this work we propose a simple heuristic that computes an approximation for
the 1-NN self-similarity join using only O(n

3
2 ) distance computations and can be

naturally parallelizable. We test the effectiveness of the algorithm using a subset
of the visual descriptors provided by IMGpedia, by comparing it against other
state-of-the-art algorithms. We also show how the algorithm can be modified in
order to improve its effectiveness while maintaining the upper bound of distance
computations.

2 Related Work

There are many approaches to solve the similarity join problem in sub-quadratic
time, both approximated and exact, that take advantage of different properties of
the domain of the data. For example, there are techniques that use prefix filtering
for string datasets or tokenized documents, such as web pages, to efficiently find
near-copies[1,2,15]. They select a prefix of each object and prune object pairs whose
prefixes have no overlap. There are others that use specific properties of the distance
involved in the similarity computation; Xiao et al. [14] propose the ed-join using
constraints on the edit distance, computing thus lower bounds in order to discard
elements from comparison. On the other hand, set similarity joins can be addressed
efficiently using inverted indexes [12].

However, we are interested in the similarity join problem in metric spaces. This
problem has been addressed mainly by indexing one or both datasets, where the
cost of building the index is sub-quadratic and the cost of querying, sub-linear.
Classic multidimensional indexes are the R-Tree [6] for range queries and the k-d
tree [10] for k-NN search, which divide the metric space so that complete regions
of it are discarded from comparison. These kinds of multidimensional indexes do
not perform well in high-dimensional spaces since we must eventually find the most
discriminating dimensions, which is not trivial and also because the elements of
the dataset may not always be vectors (e.g., words in a dictionary) hence multidi-
mensional techniques do not apply. There are indexing techniques that attempt to
overcome this problem, such as the ε-tree, which is similar to a R-tree, but when
it has to split when a node is too full, it takes the i-th dimension and divides



the vectors into equally sized intervals of the dimension, overcoming the problems
stated and performing better than R-trees [13]. Vantage Point Trees are similar to
k-d trees, but instead of making orthogonal hyperplanar cuts to space, they take
vantage points to define a sense of near and far points and making large spherical
cuts; this change is an improvement for k-d trees in nearest neighbor retrieval [16].

There are other indexing techniques that make use of clustering properties in-
stead of tree-like structures, such as in the case of the D-Index that uses a ρ-split
clustering technique, which finds exclusion regions of the space for each cluster
and later uses a pivot-based filtering within the cluster. It is suitable for both range
queries and nearest neighbor search and is proven to perform better than tree-based
approaches [3]. Another cluster-based approach is the List of twin clusters that in-
dexes both of the datasets using a clustering algorithm and later finds matches
between the clusters of the datasets, so it discards from comparison all elements
from clusters that do not have a twin on the other side [11].

Quickjoin [8] is an algorithm for range similarity joins that does not require
a multidimensional index and instead adapts techniques used in distance-based
indexing in a method that is conceptually similar to the Quicksort [7] algorithm.
Quickjoin recursively partitions the metric space using a marked object, called pivot,
so that it divides the data into two sets: the objects closer to the pivot and those
that are further to the pivot. The process continues until each partition contains
fewer than c objects; then a nested-loop is performed in the subset and the recursive
call returns; finally all the results are merged. There is a problem when objects that
should be contained in the result end up assigned to different partitions which is
addressed by keeping window partitions between every division so it is ensured that
every pair of objects at ε distance are compared. In [8] it is shown that Quickjoin
outperforms many index based approaches and other algorithms that do not use
indexes. They prove that Quickjoin takes on average O(n(1 +w)logn) comparisons,
where w is the fractional average size of the window partitions (and is dependent on
ε); however, as per Quicksort, its worst case can take O(n2) time. Fredriksson and
Braithwaite [5] give an improved version of Quickjoin, proposing multiple changes:
using pivot-based joins instead of nested-loops, using unbalanced partitions, and
making it probabilistic. They also describe a way in which k-NN similarity joins
can be computed using Quickjoin.

3 The Algortithm

The proposed algorithm computes an approximation for an 1-NN self-similarity join
and is based on a divide and conquer design. The algorithm receives a set of points
D as input, with size n and outputs a set of pairs S ⊂ D×D where every element
of the set is paired with some other element expected to be its first nearest neighbor
or a good approximation if not.

In Algorithm 1 we show the pseudo-code of the proposed algorithm, which works
as follows: first we select a set of centers among the elements of the input; second,
the rest of the elements are partitioned in different groups, one group per center;
third, within each group we compute the brute-force algorithm to obtain the 1-NN
for each of the elements, which is shown in Algorithm 2; and finally, all partial
results are aggregated and returned.

It is pending to address the strategies for picking the centers and for partitioning
the data. For simplicity, we choose to select a random set of M elements as centers
and to partition the rest of the elements into groups of size n/M . An element



Algorithm 1: Algorithm for approximated 1-NN self-similarity join.

Input: Data, a set of objects
Output: result, a set of pairs of objects

1 centers← select centers(Data);
2 groups← partition(Data, centers);
3 result← φ ;
4 for group ∈ groups do
5 partial← brute force 1NN join(group);
6 result← result ∪ partial ;

7 end
8 return result

Algorithm 2: Brute-force 1-NN similarity join.

Input: Data, a set of n objects
Output: R, a set of pairs of objects

1 D[i]←∞ ∀i, 0 < i < n ;
2 R[i]← φ ∀i, 0 < i < n ;
3 for oi ∈ Data do
4 for oj ∈ Data, i < j do
5 if δ(oi, oj) < D[i] then
6 D[i] = δ(oi, oj);
7 R[i] = (oi, oj)

8 end

9 end

10 end
11 return R

is assigned to a group, preferably to the group of the closest center, if not, to
the second closest. If the second closest group is also full, we keep repeating with
the next closest group until a group with room for the element is found. In the
worst case, the element will be assigned to the furthest group, hence computing
the distance from the point to all the centers. The pseudo-code for the partition
algorithm can be found in Algorithm 3.

3.1 Complexity Analysis

The most costly operation of these kind of algorithms is the computation of distances
between objects. The number of distance computations of our algorithm depends
strongly on the number and size of the formed groups. We can see that the partition
algorithm computes M distances per element in the worst case, giving a total of
O(n ·M) computations. On the other hand, the quadratic 1-NN join of Algorithm 2
computes (n/M)2 distances. If we use M =

√
n we can prove the following theorem.

Theorem 1. The proposed heuristic for 1-NN self-similarity join computes O(n
3
2 )

distances.

Proof. Selecting random
√
n centers does not involve distance computations. As

stated before, in the worst case, partitioning the data into
√
n groups takes O(n·M)

distance computations i.e., O(n ·
√
n) = O(n

3
2 ). Here we note that sorting the



Algorithm 3: Proposed partition strategy

Input: data, the set of elements; centers, the list of centers
Output: groups, a list of sets that partition the data

1 groups[i]← {centers[i]}, ∀i, 0 < i < |centers|;
2 maxSize← |data|/M ;
3 for obji ∈ data do
4 D ← φ ;
5 for centerj ∈ centers do
6 D ← D ∪ δ(obji, centerj);
7 end
8 sort(D[i]);
9 bestGroup← the group of the center in D[0];

10 repeat
11 if not isFull(bestGroup) then
12 bestGroup← bestGroup ∪ {obji};
13 else
14 bestGroup← the group of the center in next(D);
15 end

16 until obji is added to a group;

17 end

distances to all centers does not involve distance computations. The brute-force
join computes (n/

√
n)2 = n distances per group, as there are

√
n groups, there

are n ·
√
n = n

3
2 distance computations. Therefore, the algorithm computes O(n

3
2 )

distances in total.

The drawback of this algorithm is that, when the groups start filling, the prob-
ability that an object and its 1-NN are assigned to different groups increases, hence
the precision of the algorithm decreases. One way to handle this issue is to increase
the size of the groups. To do so without changing the upper bound of distance
calculations, we can enlarge the group size in a constant factor. We show later that
using groups of size 2

√
n improves notably the efficacy of the algorithm without a

high impact on the number of computed distances.

In practice, the running time can be decreased if instead of performing a brute-
force self-similarity join in each group, other techniques are applied. For example,
using a pivot-based approach or building a sub-quadratic construction time index
in order to discard objects from comparison leads to a lower number of computed
distances. However, the cost of distributing the objects in groups still has the com-
plexity upper bound of O(n

3
2 ) which dominates the cost no matter how much the

similarity joins are reduced. Nevertheless, such an optimization can diminish the
total execution time.

The algorithm can be naturally executed in parallel. If p processors are used, each
one can distribute n/p elements through the groups computing nM/p distances.
Afterwards, the processors can execute Algorithm 2 in parallel, one group each,
computing O((n/M)2) distances per processor. We will use this statements to prove
the following theorem:

Theorem 2. The proposed parallel algorithm computes O(n) distances per proces-
sor when using Θ(

√
n) processors.



Proof. Since p = Θ(
√
n), the partition of the objects takes nM/p = n

√
n/Θ(

√
n) =

Θ(n) distance computations for each processor. The brute-force part of the algo-
rithm takes O((n/

√
n)2)) = O(n) distance computations per processor. Therefore,

the overall process takes O(n) distance computations per processor, thus providing
linear speedup, i.e., the speedup is equal to the number of processors used, hence
having an efficiency of O(1).

4 Experimental Results

We test the effectiveness and efficiency of the proposed algorithm, comparing the
resulting pairs of objects and the number of computed distances with the ones pro-
duced by the brute-force algorithm (which we use as a ground truth), and with the
approximated version of Quickjoin proposed by Fredriksson and Braithwaite [5]3.
We choose Quickjoin, since it is the best algorithm (that does not use indexing)
for similarity joins that was found [8] and that can be adapted to find nearest
neighbors. The important thing about comparing against a non-indexing method
is that both the data and the distance functions are not set beforehand and can
be chosen at the moment by the system or the user, which is relevant when re-
solving similarity queries on multimedia databases. The data used for the exper-
iments are 928,276 feature vectors of 192 dimensions, taken from the IMGpedia
Dataset [4], corresponding to the Histogram of the Orientations of the Gradient,
which are available in the IMGpedia project site4. We run the experiments on a
machine with Debian 4.1.1, a 2.2 GHz 24-core Intel® Xeon® processor, and 120
GB of RAM. The proposed algorithm, the brute-force algorithm and Quickjoin,
along with the experiments were implemented in Python and are publicly available
at https://github.com/scferrada/self-sim-join.

We run two experiments. The first of them was comparing the result of our
algorithm against the brute-force ground truth in order to measure the precision
of the algorithm in two settings, one with groups of size

√
n and another with

size 2
√
n. Since performance of the algorithm depends on the order of the data,

such that if the objects cannot be assigned to the best fitting group this can result
in 1-NN relations to be lost, we run the algorithm 100 times and compute the
average precision. We also compute the real position of the found match in order
to quantify the error of the algorithm. In Table 1 we show a histogram where each
bin indicates if the algorithm’s response was: the 1-NN, within the 10-NN, between
10-NN and 50-NN, between 50-NN and 90-NN, and beyond 90-NN. There we see
that in only 14.6% of the cases we retrieved the correct answer, while 54% of the
time, the answer was within the 10-NN. In Table 2 we show the same results, for
the modified algorithm that uses groups with the double of size. We see that the
precision is doubled respect to the original algorithm, reaching 30.9% with 79%
of the answers within the 10-NN. In both tables we also show the 95% confidence
interval for the true mean cumulative value for the amount of elements within the
10-NN.

Making Quickjoin probabilistic, means that it can miss pairs of the result, but
all retrieved pairs are correct. Because of time restrictions, and the complexity of

3 We use the following parameters: c = 5000, the number of points to stop the recursion;
ε = 0.5, the error margin for the probabilistic algorithm; k = 10 the number of elements
used in the pivot-based join.

4 http://imgpedia.dcc.uchile.cl



Table 1: Histogram of the actual ranking of the results of the algorithm
k-NN Frequency Percentage Cumulative 95% Confidence interval

1 135,222 0.145670 0.145670 0.1450 - 0.1463
10 365,805 0.394069 0.539739 0.5380 - 0.5412

10 - 50 275,478 0.296763 0.836502 0.8340 – 0.8386
50 - 90 57,080 0.061490 0,897992 0.8951 – 0.9004
> 90 94,678 0.101993 1 –

Table 2: Histogram of the actual ranking of the results of the modified algorithm
k-NN Frequency Percentage Cumulative 95% Confidence interval

1 282,045 0.303837 0.303837 0.2990 - 0.3090
10 443,395 0.477654 0.781491 0.7710 - 0.7901

10 - 50 150,188 0.161792 0.943283 0.9341 – 0.9526
60 - 90 14,798 0.015941 0,959224 0.9499 – 0.9686
> 90 14,414 0.015527 1 –

the implemented solution5 we could only run Quickjoin over a sample of the 10%
of the data (92,827 vectors), and we found that after 20 executions, the average
fraction of retrieved results was 76% with an average execution time of 93 minutes.

In Figure 1a we show the number of distance computations for the algorithms
used: the proposed algorithm and its modified version. Since the brute-force algo-
rithm is known to be quadratic, we omitted its curve so the difference between the
other methods could be appreciated. We could not obtain the distances computed
for Quickjoin for all sizes because of the problems stated before; however, for the
subset where Quickjoin was computed it took three times more distance computa-
tions (163,902,044) compared with our algorithm (56,584,929). The extra distance
computations are because in order to make Quickjoin finding k-NN it must run two
times. We run 100 times the heuristics, and show the average number of distances.
The experiments were executed using a 10% of the data, later the 20% and so on,
until using the full dataset. There we can see that indeed the modified algorithm
computes more distances than the original algorithm; however the difference is a
fair trade-off considering that the precision increases to almost double.

5 Conclusions and Future Work

We have presented a simple approximated algorithm for solving the 1-NN self-
similarity join problem that computes O(n

3
2 ) distances and can be naturally par-

allelizable in such a way that if O(
√
n) processors are used it computes O(n) dis-

tances per processor. Such kinds of processing can enable running the algorithm
over millions of objects in linear time using a GPU. We remark the simplicity of
the algorithm, since it makes the implementation easier (which is also provided in
a public repository) and requires only one parameter (the size of the groups) in
comparison with other algorithms or indexing techniques that can be bug prone,
hard to understand, and require many parameters.

We showed in experimental results that with a minimal modification and at
a reasonable extra cost in terms of distance computations, our algorithm achieves

5 The implemented solution copies the data of the different partitions on each recursive
call, making the operative system kill the process when using larger samples of the data.



(a) Number of distances computed versus
the size of the dataset.

(b) Execution time in minutes versus the
size of the dataset.

Fig. 1: Experimental results of the algorithm

30.9% precision and 79% of the results are within the 10-NN. Compared with Quick-
join, we found that our algorithm is simpler to implement (short operations, few
parameters, easy to understand) and requires less memory. A comparison in terms
of precision can be unfair, since Quickjoin does not retrieves results for all elements,
but all pairs retrieved are correct [5]. Nevertheless, we think our approach is more
useful in practice, it takes less distance computations, it does not have a quadratic
worst case and gives a good approximation for the complete result.

As future work we plan study if the goal precision can be set beforehand, finding
a fitting function on the size of the groups or finding an optimal value for the group
size. Along these lines, it would be interesting to find an analytical expression for
the probability to find an exact match and therefore give an approximation bound.
We plan on finding if the precision can be improved by using some heuristics for
choosing evenly distributed centers for the groups, and maybe heuristics on the
assignment of the elements in the groups, for example, swapping a new element
with other already assigned in the group if such swap diminishes the radius of the
group. We will also run benchmarks on the execution time of the algorithm, using
other join techniques, rather than the brute-force approach, for example, when all
distances to one element are computed, said element can be used as a pivot to prune
further pairs from comparison.

We also plan on modifying the algorithm so that it supports k-NN similarity
joins so we can compare the output of this algorithm against the whole similarity
graph of IMGpedia. Finally we plan to propose metrics that can enable the com-
parison of the quality of different similarity graphs.
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